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Abstract 

Microchannels and microgratings on silicon (Si) are key 

components for microfluidic device, microelectromechanical 

system, Si photonics, micro-chemical reactor, micro-

biomedical devices and other applications. In the fabrication 

flow of these microstructures, photolithography and dry 

etching are the two major steps. However, both of them incur 

high fabrication cost. In this paper, we introduce a novel 

approach for fabrication of Si microstructures. The approach 

uses flow-enabled polymer self-assembly (FESA) as a facile 

pattern formation method on Si surface; a novel wet etching 

method, named metal-assisted chemical etching, is employed 

for Si etching. These two consecutive steps show good 

compatibility with each other and capability of uniform 

microstructures fabrication on Si. The proposed approach, 

with combination of two low-cost yet high-performance novel 

technology, will serve as a promising route for microchannels 

and microgratings fabrication for various Si-related devices in 

high-volume production.  

1. Introduction 

Microchannels and microgratings on silicon (Si) substrate 

are basic components in many Si-related technology. For 

example, microchannels play the key role in the fast growing 

microfluidic technology. By confining the flow liquid and gas 

liquid in micrometer scale, microchannels enable unique 

functions of the devices, such as in-system cooling [1, 2], 

microscale chemical and biochemical processing [3, 4]. 

Microchannels are also the heart of most 

microelectromechanical system (MEMS) device [5-7]. For 

microgratings, they have been widely used in the silicon 

optical devices [8, 9]. Fabrication of microchannels and 

microgratings share the similar key steps: pattern formation 

and Si etching. In the pattern formation step, a mask layer with 

designed geometry is fabricated on the Si surface. A certain 

portion of the mask layer is made hollow so that bare Si 

surface is exposed. In the following Si etching step, the bare 

Si without coverage of the mask layer is selectively etched, 

while those covered by the mask layer is passivated from 

etching. 

The most widely used pattern formation method is 

photolithography, which is readily available in microelectronic 

industry for integrated circuits (ICs) fabrication. In 

photolithography, a layer of photosensitive materials, i.e. the 

photoresist, is put on the Si surface by either spin coating or 

lamination. After baking at elevated temperature, the Si 

sample is exposed under UV-visible light with a photomask. 

After developing, photoresist is partially dissolved and the 

pattern on the photomask is transferred on the photoresist. 

Photolithography possesses high pattern transfer fidelity and 

high resolution down to sub-micrometer. The tools and 

materials for photolithography are widely available in the 

industry. However, they require high investment. In addition, 

the baking and developing processes are essentially high 

energy consuming and release a considerable amount of 

harmful waste (Figure 1). 

On the other hand, several non-photolithographic 

patterning methods have been developed, such as nanoimprint 

lithography (NIL) [10, 11] and soft lithography [12, 13]. In a 

typical NIL experiment, a layer of thermoplastic polymer is 

put on the Si surface. Then a hard template with the pattern 

topologically engraved on the surface is pressed against the 

polymer and the sample is heated so that the polymer layer 

undergoes glass transition and replicates the geometry of the 

template after cooling down. In soft lithography, soft 

templates are used for the pattern transfer. Certain materials 

(metal, polymer or biomolecules) are directly loaded on the 

soft templates and transferred on Si by contact printing. In 

both NIL and soft lithography, the UV-visible light exposure 

step is eliminated and the overall cost is lowered. However, 

fabricating the template is still expensive.  

It has long be known that nanoscale materials could form 

highly ordered micro- or nanostructures on Si through self-

assembly. For example, driven by thermodynamic force, silica 

[14] or polymer [15, 16] nanospheres tend to densely pack 

themselves into hexagonal 2D lattice. The lattice parameter is 

defined by the diameter of the nanospheres, and no external 

template is required. Recently, block copolymer (BCP) have 

been proposed as candidate for nanolithography [17-19]. BCP 

are polymers that possess two or more different blocks in one 

polymer chains, such as poly-(styrene-block-

methylmethacrylate). Due to the distinct chemical properties 

of each block, their interaction with the Si as well as 

neighboring blocks are different, which drives the whole 

polymer chain to align themselves. The collectively self-

assembly of polymer chains could form ordered structures. 

The dimension of each repeating unit in the ordered structures 

is defined by the chemical structure of the BCP molecules, 

thus the nanoscale morphology of the BCP self-assembly does 

not require any mask or template as well. However, until now, 

the overall alignment direction of BCP molecules on the Si 

surface still requires a pre-patterning on Si surface by 

traditional lithography [20].    
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Figure 1. Schematic processing flow for photolithography: 

(a) application of photoresist; (b) baking of photoresist; (c) 

UV-visible light exposure; (d) developing. 

 

 

In this work, a novel mask-less pattern formation method, 

named flow-enabled polymer self-assembly (FESA) is 

investigated. In FESA, the BCP solution is allowed to dry in a 

two nearly parallel-plate geometry, in which the lower Si 

substrate is mounted on a linear translational stage controlled 

by a computer. Parallel stripes of BCP with high regularity are 

formed by FESA in a “stop-and-move” mode. First, in the 

“stop” stage, the lower Si substrate is kept stationary for a 

short period of time, allowing BCP molecules to self-assemble 

at the contact line and form a stripe, due to the high 

evaporative loss of solvent (i.e., toluene) at the edge of the 

solution. Subsequently, in “move” stage, the lower Si substrate 

is shifted at a distance λ, making the contact line jump inward 

to the new position where the second stripe will form. By the 

iterative “move-and-stop” operation, an array of lines with 

controlled line width (W) and pitch size (λ) can be obtained on 

the Si (Figure 2) [21]. FESA bears significant advantages over 

the pattern formation methods mentioned above: (1) the 

pattern dimension as well as its alignment direction can be 

facilely controlled by intrinsic properties of the BCP 

molecules as well as the movement of the plate; (2) no mask 

or template is required, neither should any pre-patterning or 

physical manipulation, such the UV light or electron beam, be 

applied. Thus the FESA is a true mask-less pattern formation 

method; (3) the majority of materials is utilized, in sharp 

contrast with the spin coating step in photolithography where a 

considerable amount of materials are wasted; (4) all the 

processing is completed at room temperature, no heating or 

cooling is required, nor is any vacuum system needed, thus the 

energy cost in the production is minimized; (5) since the 

patterns are formed by a linear movement of the plat, the 

influence of Si substrate size is minimized, thus good 

uniformity of pattern geometry can be maintained when scaled 

up to larger Si wafers. 

 

  

 
Figure 2. Schematic processing flow for FESA: (a) 

application of BCP solution into the gap between the plate and  

Si. The arrow indicates the moving direction of the plate; 

(b) intermittent moving of the plate and patterns formation 

(black blocks) with width of w and spacing of λ.  

 

 
For the microchannels and microgratings fabrication, the 

pattern formation step is followed by Si etching step. Now the 
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most widely used Si etching for microchannels and 

microgratings fabrication is the dry etching, or reactive ion 

etching (RIE). In dry etching, the Si sample is placed between 

two large electrodes in a gas chamber. Once an electrical 

power is supplied to the electrode, the gas in the chamber will 

be ionized and plasma is generated. Under the attack of the 

plasma, the bare Si surface will be etched and microstructures 

is formed (Figure 3 left).  Dry etching has established the 

capability of fabricating high aspect ratio microstructures with 

high pattern transfer fidelity [22, 23]. However, the 

instruments for dry etching are very expensive. 

Recently, a novel Si wet chemical etching method has been 

reported, which is named as metal-assisted chemical etching 

(MaCE). In MaCE, a layer of metal catalyst is deposited on 

the pattern Si surface. The metal-coated Si is then etched by 

hydrofluoric acid (HF)-hydrogen peroxide (H2O2) aqueous 

solution (Figure 3, right). By controlling the metal catalysts’ 

geometry as well as the etching solution composition, 

nanowires [24], nanopores [25-27] and nanocavity with 

complicated 3D geometry [28-30] have been successfully 

fabrication on Si substrates. Especially, the critical conditions 

for uniform deep trenches and holes etching by MaCE have 

been identified and fundamentally understood [31, 32]. High 

aspect ratio microstructures were fabricated with sub-

micrometer accuracy [25, 33, 34]. In the previous MaCE 

studies, photolithography and electron-beam lithography were 

used for pattern formation. In this work, we report the 

successful fabrication of microchannels and microgratings by 

combining FESA and MaCE. Considering their merit of low 

cost and excellent performance, the proposed route will be 

promising for high volume production of microchannels and 

microgratings.  

 

 

 
Figure 3 Schematic processing flow for dry etching and 

MaCE. 

 

2. Experimental 

Single-side polished Si wafers were cut into 2x5 cm2 

pieces and cleaned in piranha solution before the FESA. Poly-

(styrene-block-methylmethacrylate) was used as the self-

assembly BCP materials for FESA. After FESA, a thin layer 

of Au was deposited on the patterned Si surface by a Denton 

Explorer electron beam evaporator. Then the sample was 

immersed in HF-H2O2 aqueous solution for wet etching. After 

wet etching, the sample was rinsed by deionized water and 

dried by nitrogen. The optical microscope image was acquired 

by an Olympus MX61 microscope. The scanning electron 

microscope (SEM) images were collected by a Hitachi 

SU8010 Field-Emission SEM. The cross-sectional SEM was 

obtained from Si sample after mechanical cleavage. 

3. Results and Discussion 

The bare Si surface after FESA is inspected by optical 

microscope. As shown in Figure 4, straight lines can be clearly 

observed, which align themselves in perpendicular to the 

movement of the plate. The width (w) of the lines is measured 

as 3.0 μm, with standard deviation below 0.5 μm. The spacing 

distance (λ) between two adjacent lines is measured as 25 μm. 

Figure 4 demonstrates that uniform lines can be successfully 

formed by FESA on bare Si surface with high uniformity. It 

should be noted that the uniformity of the patterns is sensitive 

to contamination from the Si surface or BCP solution. In some 

area where dust particles exist, the lines were found curved.  

 

 

  
Figure 4. Optical microscope image of Si surface after 

FESA. The BCP self-assembly appears as black lines and the 

bare Si surface is presented in green color. 

 

 
After formation of the pattern, a thin layer of Au was 

deposited on the Si sample and then the sample was immersed 

in HF-H2O2 solution for MaCE. Here we name the area of the 

Si surface covered by BCP lines as Au-BCP-Si area, and the 

other area as Au-Si area. As shown in Figure 5 (a), the two 

areas present sharp contrast under SEM. On the surface of Au-

BCP-Si area, the Au layer presents similar morphology to its 

original morphology before MaCE. In the Au-Si area, 

however, due to the chemical etching, the surface has a lower 

brightness and a higher roughness under SEM. The cross-

sectional SEM (Figure 5 (b)) further confirms the etching of Si 
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in the Au-Si area, where microchannels are formed with 

uniform geometry over the whole sample. The contrast 

between Au-BCP-Si and Au-Si areas is more clearly 

elucidated in Figure 5 (c). Si in the Au-BCP-Si protrudes out 

as microgratings with smooth sidewall. The top surface of Au-

BCP-Si area is flat, indicates that no etching occurs in this 

area. In the Au-Si, the Au catalyst etched into Si with a 

downward-bending morphology, and microchannels are 

formed. Geometric parameters of the Si sample after FESA 

and MaCE are listed in Table 1. The results demonstrate that 

the BCP, once self-assembled, possess sufficient adhesion 

with the Si surface. More importantly, the results indicate that 

the BCP bears good chemical stability in the HF-H2O2 etchant 

solution as well as good capability in blocking the etching of 

underneath Si from Au. In other words, BCP serves as both 

excellent pattern-formation material in FESA as well as the 

etching mask materials with high etching selectivity over Si in 

MaCE. In comparison, in dry etching, the pattern formation 

material, either photoresist or BCP, can hardly be used as the 

etching mask, because most polymeric materials are unable to 

withstand long-time exposure in plasma. Another layer of hard 

mask, such as silicon dioxide[35], chromium [36] or 

aluminum [7] are always requied for dry etching, which add 

cost to the overall processing.  

 

 

 

Table 1 Geometric parameters of the Si sample after 

FESA and MaCE, respectively 

Parameter Value 

Initial BCP Line Width  3.0 μm 

Initial BCP Line Spacing 25 μm 

BCP Line After MaCE 3.0 μm 

Microchannel Depth 2.2 μm 

Microchannel Width 14.5 μm 

Sidewall Tapering Angle 30o 

 

 

Conclusion 

In summary, formation of micro-pattern by the 

combination of FESA of BCP is demonstrated. The pattern 

shows good geometric uniformity. The pattern-formation 

material, BCP, serves as a good etching mask material in the 

following MaCE step, which successfully fabricates 

microchannels and microgratings on Si substrate. Compared to 

the traditional routes, the results of this work indicate that the 

combination of FESA and MaCE is a promising approach for 

high-volume production of microchannels and microgratings 

with simplicity of processing, cost efficiency and 

environmental-friendliness.  
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Figure 5. (a) Top-view and (b) cross-sectional scanning 

electron microscope (SEM) images of a Si sample after FESA 

and MaCE. (c) shows the magnified image of circled area in 

(b).  
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